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Abstract 

This paper discusses the components on components regression, a statistical technique suitable for 

explorative analyses of small datasets containing multiple independent, mediating and dependent 

variables. This method is compared to ordinary least squares and principal component regression by 

means of discussion of their properties and the assumptions underlying these estimators, a simulation 

and an empirical application to European higher education policy, and economic innovativeness in 32 

countries. In the datasets used in this paper, the components on components regression yields more 

precise estimates of the coefficients of association between independent, mediating and dependent 

variables, compared to ordinary least squares. Compared to the principal components regression, it 

leads to a more parsimonious empirical model. The simulation also shows that the standard errors of 

the coefficients estimated with the components on components regression can be obtained by 

bootstrapping. 

  



2 
 

1. Introduction 

This paper presents a method for analysing statistical relationships between multiple independent, 

mediating and independent variables, which will be called components on components (CoC) 

regression hereafter. This method starts by extracting components from the sets of independent, 

mediating and dependent variables via principal component analysis. Then, the relationships between 

the extracted components are estimated by least squares. This is very similar to principal components 

regression (PCR), in which a dependent variable is regressed on a set of components extracted from a 

set of independent variables. The difference is that CoC involves regressing components on other 

components.  

The contribution of this paper is that it highlights the differences between CoC, PCR and Ordinary Least 

Squares (OLS), and compares the relative performance of the three methods through a simulation and 

an empirical application. Furthermore, the simulation shows that it is possible to derive unbiased 

estimates of the standard errors of CoC for the parameters estimated by CoC. As the discussion focuses 

on small datasets, the asymptotic properties of the estimators are not derived in this paper. 

CoC has been specifically developed for a research project conducted by Hoareau and colleagues, 

whose results are published in Hoareau et al. (2012, 2013). In these studies, the authors explore the 

relationships between variables on higher education policy, higher education performance and 

economic innovativeness at the country level, using 32 countries. In the conceptual model of the 

authors, higher education policies are related to economic innovativeness through the performance 

of the higher education sector. The small sample size and the explorative nature of their analysis 

motivated the search for a suitable empirical method. The aim of this paper is to study some properties 

of this method, and to compare to alternative statistical methods. 

CoC can be considered an adaptation of PCR to the context of multiple dependent and independent 

variables, related through mediators. PCR (see Jolliffe 2002, Chapter 8) is suitable for situations in 

which some variables are multi-collinear or in which the sample size is small compared to the number 

of variables. Although fewer results have been obtained for small sample size, simulation studies have 

confirmed that, when the problem of multi-collinearity is severe, PCR yields more precise estimates 

than OLS (e.g. Mittelhammer & Baritelle, 1977). However, differently than CoC, PCR has not been 

designed for dealing with multiple dependent variables. CoC can also be considered as a special case 

of structural modelling with latent variables estimated by principal components. This makes it similar 

to methods such as structural equation modelling (see Kaplan, 2000) and partial least squares-path 

modelling1 (see Vinzi et al., 2009), which have been designed for multiple dependent variables and are 

able to accommodate relatively complex relationships such as mediation effects. However, these 

techniques require to identify the number of components to be extracted a priori. Hence, differently 

than CoC, these methods are more suitable for confirmatory than explorative analysis. 

Besides the methods that have just been described, a wide variety of research methods have been 

suggested for dealing with small sample size (e.g. Hoyle, 1999), multi-collinearity (e.g. Belsley, Kuh, & 

Welsch, 2004), and for carrying on explorative research (e.g. Jambu, 1991; Stebbins, 2001). Often, 

                                                           
1 Partial-least squares-path modelling is a technique related to partial least squares regression. The latter is 
similar to PCR, and it allows to work with multiple dependent variables. However, differently than partial least 
squares-path modelling, it is not suited for modelling relationships on multiple levels, in which the variables are 
linked through mediators. 
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however, the specific nature of the research problems encountered in the social sciences requires to 

combine or adapt some of these methods. CoC provides a tool for researchers who are estimating 

parameters of a linear model for which the following is true: 

- A number of variables mediate the relationship between independent and dependent 

variables; 

- There are multiple dependent, mediating and independent variables; 

- There is multi-collinearity among some variables and/or sample size is small relative to the 

number of variables included in the estimation; 

- The investigation is of an explorative nature: although the researcher may have a model in 

mind, the theoretical specification is not rich enough to allow to specify in advance the model 

in terms of the latent variables. 

As similar problems are likely to be encountered in applied research, CoC can be useful for future 

research work. The increase in available data at the country level often allows researchers to work with 

a large number of variables, but only a small number of countries or points in time. This context differs 

from the “data-rich environment” described by Bernanke and Boivin (2003), which encourages the use 

of PCR and related methods in finance. The expression “data-rich environment” refers to the 

availability of datasets with a large number of variables, observations, and points in time. However, it 

can be argued that the available data are often “rich” relative to the number of observations, in the 

sense that a substantial amount of information is available for a small number of observations. If this 

is the case, researchers might be interested in empirical techniques allowing to describe the structure 

of a dataset through a few key parameters or statistics. 

It is not the aim of this paper to give a systematic attempt of the conditions under which CoC 

outperforms other empirical methods. It is rather to show that, at least under certain conditions, CoC 

can be a useful empirical approach. After all, the utilization of this empirical approach must be 

motivated not only by data problems such as small sample size and multi-collinearity, but also by the 

types of relationships that are believed to better fit the data, and by the objectives of the research 

project. The research problems for which CoC can be a useful statistical method, and potential 

alternative methods, are discussed in Section 2. Section 3 describes the three empirical approaches 

compared in this paper (CoC, PCR and OLS) in the context of a given data generation process.  

The simulations presented in this paper, of which the design is presented in Section 4, confirm the 

conclusions of the discussion of Section 3. Given the very small sample size of the generated dataset, 

PCR and CoC generally outperform OLS, and relative performance improves further if the problem of 

multi-collinearity is more severe. CoC is the method that allows to describe the relationships in the 

data with the lowest number of parameters, which is useful in explorative analysis.2 Furthermore, 

boostrapping yields accurate estimates of the standard errors of the coefficients estimated by CoC. 

One more surprising result is that the ideal number of components to be retained in PCR and CoC can 

                                                           
2 Note that here I use the term “describe”, as opposed to “determine”. The reason is that the focus of this paper 
is on explorative approaches, in which the task of the researcher is to describe the relationships between the 
observed variables (or, to put it with Jambu (1991, pp. 3–4), “synthesise the content of data”) in a parsimonious 
way, rather than determining the size of some causal relationships. Similarly to other statistical methodologies 
based on factor or principal components analysis, CoC (despite requiring the estimation of many parameters 
when estimating the loadings of the principal components), provides the opportunity to describe these 
relationships in a parsimonious way. 
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be different depending on the type of relationship that the researcher investigates. For example, when 

performing PCR, Jolliffe (2002, Chapter 8) suggests excluding components with an eigenvalue lower 

than a threshold lying between 0.01 and 0.1. The simulations presented in this paper confirm the 

validity of this rule of thumb for estimating direct relationships between variables, but not for 

estimating mediated relationships. These results are reported in Section 5. 

Section 6 presents an application of CoC to the dataset of Hoareau et al. (2012, 2013). The application 

is related to the empirical analysis carried out in that paper. However, some additional statistics and 

estimators are computed. Section 7 draws some conclusions, which must be interpreted with the 

design of the simulation in mind. In particular, the simulation is based on samples of small size and on 

the assumption of normality of the generated variables. 

 

2. Definition of the problem 

The research problem in Hoareau et al. (2012, 2013) 

It is useful to start by describing the studies by Hoareau et al. (2012, 2013), since this paper is motivated 

by the empirical problems encountered there. Hoareau et al. (2012, 2013) investigate the relationships 

between variables on higher education policy, higher education performance and economic 

innovativeness in 32 European countries. They collect 18 indicators at the country level. Six indicators 

represent higher education policy, for example, organizational autonomy of universities or 

expenditures per student. The six indicators represent different dimensions of what the authors call 

“empowerment” of universities. Ten variables represent higher education performance: for example, 

grants won from the European Research Council per million inhabitants, or proportion of international 

students in tertiary education. Finally, two variables represent economic innovativeness: the 

proportion of the labour force employed in knowledge intensive sectors and labour productivity. In 

the conceptual model of the authors, higher education policies are related to the performance of the 

higher education sector, which in turn is related to economic innovativeness. The authors perform 

three principal component factor analyses for the three groups of variables separately.  

Principal component factor analysis is a family of techniques for performing factor analysis starting 

from the extracted principal components (see e.g. Basilevsky, 1994, Chapter 6; Jolliffe, 2002, Chapter 

7). In Hoareau et al. (2012, 2013), the factors extracted are in fact standardised principal components. 

The authors retain and rotate components with an associated eigenvalue greater than one, resulting 

in one component representing innovativeness, three components representing higher education 

performance, and three components representing policies. They regress the innovativeness 

components on the performance components, and the performance components on the policy 

components. Finally, the authors interpret and analyse the resulting coefficients. In doing so, they 

comment on the association among different components or variables, without claiming to be 

uncovering causal relationships. Nonetheless, they interpret the predicted value of the innovativeness 

component for a certain country (given the value of the policy components) as a measure of the 

contribution of university policy to economic innovativeness in that country. In line with their 

conceptual model, they find that higher education policies are associated with higher education 

performance, which in turn is associated with economic innovativeness in a given country. 
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Furthermore, they conclude that university policy is best tuned to the innovativeness of the economy 

in Norway, followed by Cyprus, the UK and a number of Northern and Central European countries. 

Notice that regressing components on components results in running five regressions, with three 

independent variables each. This allows the authors not only to find some significant relationships 

between the dimensions that they investigate (despite the very small sample size), but also to describe 

these relationships in a parsimonious way. These aspects are discussed in the remainder of this paper, 

after generalizing the research problem of Hoareau et al. (2012, 2013). 

The research problem generalized 

Suppose that there are three types of variables: p, q, and e. The variable of the type q are perfect 

mediators between p and e. This means that the variables of the type p are related to the variables of 

type e only through the variables of the type q. These relationships do not necessarily have to be causal 

relationships. For example, it could be that a variable of the type p influences some variables of the 

type q, but that it is itself affected by some variables of type q.3 In this paper, the focus is on a closed 

model, in which each relevant variable can be classified in one of the three types p, q, or e. However, 

it would not be difficult to extend the model so that it includes other types of variables (for example, 

exogenous variables that influence some of the variables belonging to the group of the mediating or 

of the dependent variables). 

This is illustrated by the path diagram in Figure 1, where Vp, Vq, and Ve are used to denote the total 

number of variables in the respective categories, and xcj indicates the jth variable in type c (c=p,q,e).  

Figure 1 Path diagram of the relationship between variables 

 

Suppose that the researcher is interested in estimating the expected value of the variables of type e 

conditional on the variables of type p, and all relevant coefficients of association between couples of 

variables that allow to construct this estimate. By making appropriate assumptions about the 

relationships (linearity of the relationship being just one of these), this estimation could be performed 

by running a set of OLS regressions (see Greene, 2003, Chapters 2–4 for a review of OLS). However, 

                                                           
3 The fact that the relationships are possibly bi-directional means that the model described in this section is a 
non-recursive model. Non-recursive models potentially generate complex dynamics for the effects among 
different variables (Kaplan, 2000). However, in this paper these complications are avoided, as we look at a static 
model, where the associations are evaluated at a given point in time. 
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using OLS can be problematic in the context of multi-collinearity and / or small sample size (relative to 

the number of variables). A broad and intuitive definition of multi-collinearity is given by Belsley et al. 

(2004, Chapter 86): “[multi-]collinearity exists if there is a high multiple correlation when one of the 

variates is regressed on the others”. The consequences of multi-collinearity for OLS results are well 

known: in the presence of multi-collinearity the estimates are imprecise, that is, they have high 

variance. If the sample size is small relative to the variables used in the analysis, the problem is different 

but the effect is similar. Adding too many variables to the estimation decreases the degrees of 

freedom. Hence, the precision of the estimates decreases and standard errors increase. 

When facing one of these problems, one alternative to OLS is reducing the variables in the p and q 

categories to a smaller number of latent factors or of principal components. Strucutural equation 

modelling (Kaplan, 2000; Williams et al., 2003) and partial least squares-path modelling (see 

Tenenhaus et al., 2005; Vinzi et al., 2009) are examples of techniques that reduce the variables to 

factors or components with the purpose of estimating complex relationships (accommodating for 

moderation and mediation effects). However, these require identifying the latent factors a priori. The 

researcher may not be willing to do so. For example, Horeau et al. (2012, 2013) do not always have 

theoretical reasons to group the variables together. In fact, each of their higher education policy 

variables is collected precisely because it represents a different dimension of what they define as 

“empowerment” of universities (hence, each variable represents a theoretically distinct construct). 

Therefore, the authors are not interested in estimating relationships between pre-specified factors or 

components. Instead, they are interested in an explorative analysis of the structure of the variances 

and covariances in the dataset.4 

Two more flexible alternatives that allow handling multi-collinearity or small sample size without 

imposing an a priori specification of the latent structure onto the data are principal component 

regression (Basilevsky, 1994, Chapter 10; Jolliffe, 2002, Chapter 8) and factor analysis regression 

(Basilevsky, 1994, Chapter 10; Kosfeld and Lauridsen, 2008). The former has received more attention 

in the statistical literature. Both techniques consist of extracting a number of principal components (or 

factors) from the set of independent variables, and using them as independent variables in an OLS 

estimation. The coefficients of the original linear relationship between the dependent and the 

independent variables can subsequently be recovered, generally with a bias. The estimates will, 

however, usually be more stable, and the standard errors reduced (Jolliffe, 2002, Chapter 8). Often 

PCR and factor analysis regression are used as explorative tools, so that the coefficients of the original 

linear relationship between the variables are not recovered. In that case, the interest lies in the 

relationship between the dependent variables and the factors (or principal components) derived by 

the explorative analysis. Principal components or factors can be used in combination with OLS (e.g. 

Corazzini, Grazzi, & Nicolini, 2011) or other empirical techniques, such as logit regression (e.g. Braun 

et al., 2013; Jakobsen et al., 2013) or spatial analysis (e.g. Perobelli and Oliveira, 2013). 

                                                           
4 An alternative would be to split the explorative part of the analysis and the estimation of the parameters. For 
example, the analysis could be conducted in two steps. In the first step, the relevant components would be 
identified through an explorative principal components analysis, rotated and interpreted; in the second step, the 
researcher would use the information gained through the explorative analysis to identify the latent variables of 
a partial least squares-path modelling analysis. This alternative is not analysed in this paper, but it would be 
interesting to study its properties in further research. 
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One reason why the classic PCR model (as well as factor analysis regression and the applications that 

have been just mentioned) may not be suitable for the model in Figure 1 is that, in the model in Figure 

1, there are multiple dependent variables. Another reason is that, in the model in Figure 1, the 

variables in the category q are both independent and dependent variables. These two differences have 

implications in terms of how to estimate the model once the factors (or principal components) have 

been extracted. These implications will be explored in the next section. In that section, I will first show 

how the model in Figure 1 could be estimated by running a large number of OLS or principal component 

regressions. Then, I will show how CoC can be applied to the problem. 

Before closing this section, it is useful to mention that many statistical methods have been developed 

for dealing with multi-collinearity. Dormann et al. (2013) provide the potentially most comprehensive 

review to date, presenting 23 different methods for handling multi-collinearity and comparing them 

by a simulation. Yet, they do not review a number of other methods described in the literature. To give 

a few examples of methods that have not been included in their review, see those proposed by Chang 

and Yang (2012), Kiers and Smilde (2007), and Kosfeld and Lauridsen (2008). Most of these methods 

are related to PCR or structural equation modelling.5 These two techniques have either been designed 

for the case of a single dependent variable, or they require the pre-specification of a latent factor 

structure. 

  

3. OLS, PCR, and CoC 

A model of linear relationships with perfect mediation 

Suppose that the relationships depicted in Figure 1 are linear. In that case, they can be written as: 

(1) {
𝑋𝑒 = 𝑋𝑞𝛽𝑒 + 𝜈𝑒
𝑋𝑞 = 𝑋𝑝𝛽𝑞 + 𝜈𝑞

 

Where each Xc is a N ⨉ Vc full column rank matrix of N observations on Vc variables; βe and βq are, 

respectively, a Vq ⨉ Ve and a Vp ⨉ Vq matrices of unknown coefficients; νe and νq are, respectively, a N 

⨉ Ve and a N ⨉ Vq matrices of independently and identically distributed disturbances. These 

disturbances are orthogonal to each other and are drawn from multivariate normal distributions with 

mean 0 and covariance matrices Σve and Σvq, respectively, with all non-diagonal elements equal to 0.  

If every row of Xp is independently drawn from a multivariate normal distribution, then the variables 

in the stack matrix X=[Xp,Xq,Xe] (which is a juxtaposition of the three matrices Xp, Xq and Xe) are 

multivariate normal. This is illustrated in Equation (2), representing the distribution of the variables for 

the i-th row of the data matrix X. 

                                                           
5 A different family of methods to deal with multi-collinearity is ridge regressions (A. E. Hoerl and Kennard, 1970; 
R. W. Hoerl et al., 1986). However, one characteristic that ridge regression has in common with PCR-related 
methods that it is designed for a case with a single dependent variable. Furthermore, ridge regression does not 
reduce the number of independent variables in the regression. As a result, it is useful for dealing with the problem 
of multi-collinearity, but it is less useful for the problem of small sample size relative to the number of variables. 
In general, although multi-collinearity and small sample size have similar effects and can be sometimes dealt with 
using the same techniques, estimators have more often been designed and tested for dealing with multi-
collinearity, rather than small sample size (Dormann et al., 2013). 
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(2) 𝑥𝑖 = [𝑥𝑖
𝑝
, 𝑥𝑖
𝑞
, 𝑥𝑖
𝑒]~𝒩([0,0,0], [

𝛴𝑝𝑝
𝛴𝑞𝑝
𝛴𝑒𝑝

𝛴𝑝𝑞
𝛴𝑞𝑞
𝛴𝑒𝑞

𝛴𝑝𝑒
𝛴𝑞𝑒
𝛴𝑒𝑒

]) 

Where xi is the stack vector of the variables characterising observation i, i=1,…,N, and it is derived as 

the juxtaposition of the three vectors of variables of type c=p,q,e observed for the unit i, xip, xiq, and 

xi
e; Σcc=E[xi

c’∙xi
c] is the full-rank variance-covariance matrix of the vector xi

c for every variable of type 

c=p,q,e; Σcd=E[xic’∙xid] is the full-rank matrix of covariances between the variables in the vectors xic and 

xid, d=p,q,e.  

Notice that, as it was previously mentioned, System of Equations (1) should not necessarily be read in 

terms of causality. Instead, System of Equations (1) depicts a linear relationship among the variables 

of different types which may be only correlational. Nonetheless, it implies that, conditional on the 

matrix Xq, the expected value of the matrix Xe does not depend on the matrix Xp: 

(3) 𝐸[𝑋𝑒|𝑋𝑞] = 𝐸[𝑋𝑒|𝑋𝑞 , 𝑋𝑝] 

Given the linearity of the relationships among the variables, Equation (3) can be expressed as a 

restriction on the covariance matrices by using linear partitioned projection formulas (Greene, 2003, 

sec. 3.3; Wooldridge, 2002, App. 2A). The resulting restriction is: 

(4) 𝛴𝑝𝑒 − 𝛴𝑝𝑞𝛴𝑞𝑞
−1𝛴𝑞𝑒 = 0 

By using the two equations presented in System of Equations (1), the equation relating Xe and Xp can 

be derived: 

(5) 𝑋𝑒 = 𝑋𝑝𝛽𝑞𝛽𝑒 + 𝜈𝑞𝛽𝑒 + 𝜈𝑒 

Estimation by Ordinary Least Squares (OLS) 

Estimates of the parameters of the system of Equations (1) can be obtained by OLS under appropriate 

assumptions (see e.g. Greene, 2003, Chapters 2–4). The results can be presented as three matrices 

containing the estimated coefficients: one for the relationship between Xe and Xq (β̂qOLS), one for the 

relationship between Xq and Xp (β̂eOLS), and one for the relationship between Xe and Xp (δ̂OLS). The vector 

of the mediated effects, δ̂OLS, is then obtained by multiplying β̂qOLS by β̂eOLS (Hicks and Tingley, 2011; 

MacKinnon, 2008). 

Estimating the model by OLS can lead to two problems. Firstly, the number of parameters within the 

matrices β̂eOLS and β̂qOLS is potentially very large, being equal to Ve∙Vq+Vq∙Vp. If the researcher is 

interested in describing the relationships in Figure 1 by using a few key parameters, this is 

inconvenient. Secondly, although all the parameters can be estimated by OLS, the estimates may be 

very imprecise in case of multi-collinearity or small sample size (relative to the number of variables). 

Indeed, multi-collinearity and small-sample size are the two reasons indicated by Stone (1947) in his 

pioneering study for justifying the use of what would have later been known as principal components 

regression. 

Estimation by Principal Components Regression (PCR) 

System of Equations (1) can also be estimated by PCR. Let us start the discussion of PCR with the 

problem of extracting the principal components (by principal component analysis, hereafter PCA) or 
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the factors (by factor analysis, hereafter FA). PCA and FA are based on different assumptions about the 

underlying structure of the data, although in practice they often lead to similar results (Jolliffe, 2002, 

Chapter 7). The underlying idea of PCA on one side is to “reduce the dimensionality of a dataset 

consisting of a large number of interrelated variables, while retaining as much as possible of the 

variation present in the dataset” (Jolliffe, 2002, p. 1).6 PCA leads to the following decomposition of the 

three groups of variables p, q, and e: 

(6) {

𝑋𝑝 = 𝑍𝑝𝐴𝑝
𝑋𝑞 = 𝑍𝑞𝐴𝑞
𝑋𝑒 = 𝑍𝑒𝐴𝑒

 

Where each Zc is a N ⨉ Vc vector of principal components; each Ac is the transpose of the Vc ⨉ Vc 

orthogonal, full-rank matrix of loadings. The loadings are determined by PCA, and they allow to 

uniquely determine the components of each full-rank matrix Zc. On the other side, the basic idea 

underlying factor analysis is that a number of observed random variables can be expressed, with the 

exception of an error term, as linear functions of a smaller number of common factors (Jolliffe, 2002, 

p. 151).  

The remainder of this section will focus on PCA rather FA, for a number of reasons. First of all, the fact 

that the matrix Ac is invertible ensures that Zc is linear in Xc, which simplifies the discussion in this 

paper. Furthermore, the model in Figure 1 requires fewer assumptions than those required by a latent 

factor model, and this could be appropriate in a number of applied research settings. For example, 

Hoareau et al. (2012, 2013) collect their policy variables because they represent distinct theoretical 

dimensions. It may not be appropriate to postulate that these distinct dimensions are explained by a 

number of latent common factors. Another reason is that in applied research very often a factor 

analysis model is invoked, but the estimations of the factors are obtained by extracting the first 

principal components and by standardising them (examples are Corazzini et al., 2011; Hoareau et al., 

2012, 2013; however, details of the exact estimation of the factors are often omitted from applied 

research papers). This practice can find a statistical justification in Tipping and Bishop (1999) who show 

that, under a particular structure of errors in the latent factor model, the factors could be estimated 

equivalently by PCA or maximum-likelihood FA. 

Once the components have been chosen, they can be rotated by using one of a number of algorithms 

developed for this purpose (see e.g. Jolliffe, 2002, Chapter 11). This helps the interpretation of the 

components and of the coefficients estimated by principal component regressions. However, since the 

rotation merely generates linear combinations of the previously extracted components, the number 

of components involved, as well as the estimators β̂e, β̂q, and δ̂, remain the same. Hence the discussion 

and the conclusions of this paper are unaffected by the fact that the components may be rotated. 

                                                           
6 This definition is more related to what the empirical researcher can do with PCA, than to the underlying 
assumptions imposed by PCA on the underlying structure of the data. This is consistent with the approach taken 
by Jolliffe (2002, Chapter 7), who maintains that PCA requires basically no such assumption, different from factor 
analysis. Indeed, in the DGP used for the simulation of this paper, no restriction on the rank of the data matrix is 
imposed (i.e., the variables in the dataset are not generated by a smaller number of common factors or 
components). 
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By using the systems of Equations (1) and (6), it is possible to re-write the relationships between the 

variables and principal components of the different groups as: 

(7) {
𝑋𝑒 = 𝑍𝑞𝐴𝑞𝛽𝑒 + 𝜈𝑒 ≡ 𝑍𝑞𝛾𝑒 + 𝜈𝑒
𝑋𝑞 = 𝑍𝑝𝐴𝑝𝛽𝑞 + 𝜈𝑞 ≡ 𝑍𝑝𝛾𝑞 + 𝜈𝑞

 

(8) 𝑋𝑒 = 𝑍𝑝𝐴𝑝𝛽𝑞𝐴𝑞
′ 𝐴𝑞𝛽𝑒 + 𝜈𝑞𝐴𝑞

′ 𝐴𝑞𝛽𝑒 + 𝜈𝑒 ≡ 𝑍𝑝𝛾𝑞𝐴𝑞
′ 𝛾𝑒 + 𝜈𝑞𝐴𝑞

′ 𝛾𝑒 + 𝜈𝑒 

Notice that systems of Equations (7) and Equation (8) are equivalent to system of Equations (1) and 

Equation (5), respectively. In fact, the relationships implied by the system of Equations (7) can be 

estimated by OLS, obtaining estimates of the elements of the two matrices Aq∙βe≡γe and Ap∙βq≡γq. 

Given that Aq and Ap are known and invertible7, it is straightforward to derive estimates for βe and βq. 

If all the principal components are included as independent variables, then the results will be identical 

(in terms of the estimated coefficients and the standard errors of the estimates) to those obtained by 

running OLS regressions with the original variables.  

On the contrary, if some of the components are dropped (or, equivalently, if some of the coefficients 

in βq and βe are constrained to be equal to 0), then the literature on PCR suggests that the coefficients 

will be estimated with a bias, but (in case of multi-collinearity or small sample size relative to the 

number of variables) the standard error of the estimate will decrease (Jolliffe, 2002, Chapter 7). Only 

if the constrained coefficients are truly equal to zero, like in the case of measurement error (e.g. 

Basilevsky, 1994, Chapter 10), then the coefficients estimated by PCR are unbiased. 

Hence, the researcher must decide which coefficients to set equal to zero or, in other words, which 

components to leave out of the estimation. Usually, in applied research, the choice is to leave out the 

components with the smallest eigenvalue, although alternative criteria exist and may be more efficient 

(e.g. Jolliffe, 2002, Chapter 8). In the simulations and the application carried out in the paper, this 

criterion is applied, leaving out the components with an associated eigenvalue below a pre-specified 

threshold. This also suits the explorative nature of many applied research papers, whose interest lies 

in exploring the correlation structure and computing relationships among a few components which 

carry most of the variance in the data. 

After it has been decided which components to exclude, estimators for γe and γq (hereafter, γ̂ePCR and 

γ̂qPCR) are obtained by a set of PCR regressions. From these estimators, it is possible to obtain 

estimators for βq and βe (β̂qPCR and β̂ePCR). The multiplication of these two estimators can, in turn, be 

used as an estimator for δ (δ̂PCR). 

Notice that the number of parameters in γ̂ePCR and γ̂qPCR (estimated by means of a number of PCRs) is 

lower than the number of parameters in β̂eOLS and β̂qOLS (that have to be estimated if OLS is used). If a 

number rc < Vc of principal components is retained for any category of variables c, then the total 

number of parameters estimated by PCR is Ve∙rq + Vq∙rp. This number is lower than with OLS, which can 

help in the exposition and interpretations of the results (provided that a useful interpretation of the 

components, before or after rotation, exists). 

Estimation by Components-on-components regression (CoC) 

                                                           
7 Indeed, since the matrices Ac are orthogonal matrices, their inverse is equivalent to their transpose. This fact is 
used in the derivations of this section and of Appendix A. 
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The assumption of a linear relationship among the variables is equivalent to the assumption of a linear 

relationship among the extracted principal components. Indeed, by combining the systems of 

Equations (1) and (6), it is possible to write the relationships between principal components as: 

(9) {
𝑍𝑒 = 𝑍𝑞𝐴𝑞𝛽𝑒𝐴𝑒

′ + 𝜈𝑒𝐴𝑒
′ ≡ 𝑍𝑞𝜏𝑒 + 𝜈𝑒𝐴𝑒

′

𝑍𝑞 = 𝑍𝑝𝐴𝑝𝛽𝑞𝐴𝑞
′ + 𝜈𝑞𝐴𝑞

′ ≡ 𝑍𝑝𝜏𝑞 + 𝜈𝑞𝐴𝑞
′  

(10) 𝑍𝑒 = 𝑍𝑝𝐴𝑝𝛽𝑞𝐴𝑞
′ 𝐴𝑞𝛽𝑒𝐴𝑒

′ + 𝜈𝑞𝐴𝑞
′ 𝐴𝑞𝛽𝑒𝐴𝑒

′ + 𝜈𝑒𝐴𝑒
′ ≡ 𝑍𝑝𝜏𝑞𝜏𝑒 + 𝜈𝑞𝐴𝑞

′ 𝜏𝑒 + 𝜈𝑒𝐴𝑒
′  

where system of Equations (9) and Equation (10) are equivalent to system of Equations (1) and 

Equation (5), respectively, as τe≡AqβeA´e and τq≡ApβqA´q. Once the components have been extracted, 

estimates of the parameters of the system of Equations (9) can be obtained by OLS. The difference is 

that principal components are used not only as independent variables, but also as dependent variables. 

Estimates for the parameters in βe, βq and δ can be recovered; these will coincide with the OLS 

estimates if all components are used. Alternatively, some components can be excluded from the 

analysis, as is the case for PCR. 

PCR and CoC are thus very similar, as the only difference is that the two sets of dependent variables in 

system of Equations (7) are replaced with two different and related sets of dependent variables in 

Equation (9). Hence, it is not unreasonable to expect that some of the characteristics of the two 

methodologies will be similar. In particular, it is not unreasonable to expect that dropping some of the 

components among the independent variables will possibly introduce bias in the estimates, but that it 

may also increase their stability under specific circumstances (typically, the presence of multi-

collinearity and / or small sample size). However, excluding a number of components from the set of 

the dependent variables has the advantage of reducing the number of the estimated parameters in 

the vectors τ̂e and τ̂q. If a number rc < Vc of principal components is retained for any category of 

variables c, then the total number of parameters estimated by CoC is re∙rq+ rq∙rp. This number is lower 

than for OLS and PCR, which may help to summarise and interpret the results concisely (provided that 

a useful interpretation of the components, before or after rotation, can be found). 

It is interesting to notice that Hoareau et al. (2012) use CoC in their analysis, but impose a  restriction 

on the estimate of Ze, by replacing all negative elements of  β̂e and β̂q with 0. This introduces further 

bias into the estimation of Ze, in addition to the bias introduced by discarding the components with 

the smallest eigenvalue. Unlike the latter source of bias (excluding some of the components), imposing 

a minimum value of 0 for the components of β̂e and β̂q does not necessarily benefit the analysis by 

increasing the precision of the estimates. Hence these restrictions are not imposed in the application 

shown in this paper, and the estimates are obtained using the procedure that has just been described. 

Relationship between OLS, PCR, and CoC 

OLS and PCR yield identical estimates of the parameters βe, βq and δ if all components are included 

(see Jolliffe, 2002, for a discussion of the relationship between OLS and PCR). The same holds true for 

CoC. Furthermore, as can be seen in Appendix A, it is sufficient that all the components in Ze are 

included in the estimation procedure to obtain the same estimator δ̂ with PCR and CoC. 

 

4. Simulation design 
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Dataset design 

In light of the previous discussion, PCR and CoC can be expected to be more efficient than OLS under 

specific circumstances, such as small sample size and multi-collinearity. Furthermore, CoC is expected 

to estimate the relationships between the different groups of variables with the smallest number of 

parameters. In this section, two datasets (Dataset 1 and Dataset 2) are generated to evaluate the 

relative performance of OLS, PCR and CoC in a statistical environment similar to that of Horeau et al. 

(2012, 2013), and to see if it is possible to estimate correctly the standard errors of CoC estimates by 

bootstrapping in this environment. 

Each dataset contains data on 18 variables (six of the type p, ten of the type q, and two of the type e – 

the same numbers of variables as in Hoareau et al., 2012, 2013) for a hypothetical population of 10000 

observations. The simulation consists of repeatedly extracting samples of 32 observations from this 

population, estimating the relationships between the variables according to each of the three 

statistical methods, and recording the statistics of interest. This subsection describes the procedure 

used for generating the datasets. The next subsection explains which indicators were used for the 

comparison of the three methods. 

Dataset 1 was generated to mimic some characteristics of the model described by Equations (1) – (5) 

and some characteristics of the dataset used by Hoareau et al. (2012, 2013). The generated variables 

are distributed according to a multivariate normal distribution, where for each group of variables the 

correlation matrix is the same as in the dataset used by Hoareau et al. (2012, 2013). This full-rank 

correlation matrix is reported in Appendix B. Each variable has an expected value equal to 0 and unit 

standard deviation. The data were generated as follows: 

(11) 

{
  
 

  
 

𝑊𝑝 = 𝜀𝑝
𝑋𝑝 = 𝑊𝑝𝐵𝑝

𝑊𝑞 = 𝑊𝑝𝑇𝑞 + 𝜀𝑞
𝑋𝑞 = 𝑊𝑞𝐵𝑞

𝑊𝑒 = 𝑊𝑞𝑇𝑒 + 𝜀𝑒
𝑋𝑒 = 𝑊𝑒𝐵𝑒

 

Where the notation is explained in the following paragraphs. 

Each Xc is a full-rank matrix containing the values for the variables of type c=p,q,e. Hence, Xp is a 10000 

X 6 data matrix, Xq is a 10000 X 10 matrix, and Xe is a 10000 X 2 matrix. 

Wp, Wq, and We are sets of vectors only used to generate the data matrices Xp, Xq, and Xe, respectively. 

Each of them is characterised by the same dimensionality as its respective data matrix. 

Tq and Te are, respectively, a Vp ⨉ Vq and a Vq ⨉ Ve matrix of parameters. Each of the parameters is 

independently drawn from a standard normal distribution. 

Each Bc is a Vc ⨉ Vc full rank matrix of parameters generated in a manner so that the covariance matrix 

for Xc is the same as the respective correlation matrix in Hoareau et al. (2012) (which is reported in 
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Appendix B), and that the variance of every variable in the matrix Xc is equal to one.8 Note that the fact 

that Bc is full rank implies that there is no perfect collinearity in Xc, so that there will be some bias in 

the PCR and CoC estimates of the parameters in the simulation. Hence, the simulated environment is 

favourable to OLS in this respect. It would be interesting, in further research, to generate data matrices 

of reduced rank, so that the PCR and CoC estimates could be unbiased.  

Each εc is a set of vectors εc1,…,εcVc of disturbances independently drawn from a multivariate normal 

distribution with mean 0 and the following covariance matrix Σεε: 

(12) 𝛴𝜀𝜀 =

𝜀𝑝1 … 𝜀𝑝6 𝜀𝑞1 … 𝜀𝑞10 𝜀𝑒1 𝜀𝑒2

𝜀𝑝1 1

… … …

𝜀𝑝6 0 0 1

𝜀𝑞1 0 0 0 𝜎𝜀𝑞
2

… … … … … …

𝜀𝑞10 0 0 0 0 0 𝜎𝜀𝑞
2

𝜀𝜀1 0 0 0 0 0 0 𝜎𝜀𝑒
2

𝜀𝜀2 0 0 0 0 0 0 0 𝜎𝜀𝑒
2

 

σ2εq is chosen in a manner that the expected fraction of unexplained variance over explained variance 

in the equation Wq=WpTq+εq (i.e., the equivalent of the statistic 1/(1-R2) in an OLS regression) is equal 

to 1.79. This is the average value for the statistic 1/(1–R2) that is obtained after regressing all variables 

of type q on the Xp matrix, using the dataset of Hoareau et al. (2012, 2013). The parameter σ2εp is 

similarly chosen so that the expected fraction of unexplained variance over explained variance is equal 

to 1.97. 

An important feature of this dataset is that, given the procedure with which it has been constructed, 

Xp and Xe are correlated, but they are not correlated conditional on Xq. Hence, the restrictions provided 

by Equations (3) and (4) hold and Xq is a perfect mediator in the relationship between Xp and Xe. 

Dataset 2 is generated using an identical procedure, but the correlation between any two variables 

belonging to a given category is the square root of the absolute value of the correlation between the 

same two variables in Dataset 1. Hence, the problem of multi-collinearity in Dataset 2 is more severe. 

Only two different datasets have been constructed because the purpose of the paper is not to 

extensively describe the relative performance of OLS, PCR, and CoC in a wide range of situations, but 

to discuss the CoC estimator and show that it has satisfying properties in a number of circumstances.  

Indicators used for the comparison 

In previous literature, the comparison between OLS and PCR is often found among comparisons of a 

larger number of techniques (e.g. Faber and Kowalski, 1997; R. W. Hoerl et al., 1986; Kiers and Smilde, 

2007; Kosfeld and Lauridsen, 2008; Merola and Abraham, 2001; Mittelhammer and Baritelle, 1977). 

The results described in the aforementioned literature confirm the conclusions of the theoretical 

                                                           
8 Each Bc is a trasformation of the square root of the estimated correlation matrix for the variables of the 
respective category c used in the application. To obtain Bc, each column of this matrix is multiplied by a scalar to 
ensure that the resulting variance of the variables of type q is equal to 1. 
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literature: if multi-collinearity is a serious problem, PCR outperforms OLS in terms of accuracy of the 

estimators and out-of-sample prediction. In these studies, the indicator which is most often used for 

comparing different estimators is the mean squared error (or a closely related measure, like its square 

root), both for accuracy of the parameters estimators, and for out-of-sample prediction. For this 

reason, the mean square error will be used as the main criterion for comparing different methods in 

this study.  

Once the dataset has been constructed, 500 random samples of 32 observations were drawn for each 

of the three techniques described in Section 3 (OLS, PCR and CoC). Thirty-two was chosen as the 

number of observations because it is the same as in Hoareau et al. (2012, 2013). For each sample and 

method I computed the estimators β̂q, β̂e, and δ̂.9 

In order to compare the three different methods with each other, I computed the mean of the square 

difference between estimated and true parameters for the 500 estimates, distinctly for the parameters 

belonging to β̂q or β̂e and for those belonging to δ̂:10 

(13)  𝑀𝑆𝐸𝛽 =
1

500
∑

1

80
[∑ ∑ (𝛽̂𝑞𝑖𝑗𝑘 − 𝛽𝑞𝑖𝑗)

26
𝑗=1

10
𝑖=1 + ∑ ∑ (𝛽̂𝑒𝑖ℎ𝑘 − 𝛽𝑒𝑖ℎ)

22
ℎ=1

10
𝑖=1 ]500

𝑘=1  

(14)  𝑀𝑆𝐸𝛿 =
1

500
∑

1

12
[∑ ∑ (𝛿𝑗ℎ𝑘 − 𝛿𝑗ℎ)

22
ℎ=1

6
𝑗=1 ]500

𝑘=1  

Where: βqij is the parameter describing the relationship between the jth variable of the type p and the 

ith variable of the type q; βeih is the parameter describing the relationship between the hth variable of 

the type e and the ith variable of the type q; δih is the parameter describing the relationship between 

the hth variable of the type e and the jth variable of the type p; β̂qijk, β̂eihk, and δ̂ihk are the estimators 

for the respective parameter for the sample k, k=1,…,500. Notice that PCR and CoC are two-steps 

estimation procedures. In the first step, an estimate of the components is produced for the sets of 

variables of each type c=p,q,e, based on the sample estimate of the components’ loadings. In the 

second step, the estimated components are used to estimate the relationships between the different 

sets of variables. As a result, the errors in the parameter estimates of βe, βq, and δ (which are 

aggregated and summarised by the indicators presented in Equations (13) and (14)) can be generated 

                                                           
9 It is important to notice that when estimating the parameters by PCR and CoC, the loadings of the components 
are estimated for each sample by PCA, as described in Section 3. An alternative, which could be considered in 
future research, is using the ‘true’ loadings as defined in the data generating process. This could shed light on 
whether the so-called ‘generated regressor problem’ (see Pagan, 1984;  or Westerlund and Urbain, 2011 for a 
more recent discussion with a focus on principal components) plays an important role in the context of the 
simulation presented in this study. 
10 These measures represent the arithmetic average of the mean squared errors across different parameter 
estimates, following the approach used in the aforementioned literature. However, it could be the case that the 
researcher is particularly concerned with the possibility that, although most of the estimators are close to the 
true parameters, a few estimators are very far from the true values. In this case, it could be interesting to use, 
instead of the arithmetic average, a weighted average of the squared errors across different parameter 
estimates, with weights depending on the precision with which the parameters are estimated. Additionally, some 
of the estimated parameters (belonging to the vectors β̂q, β̂e, or δ̂) may be more interesting than others, for 
example, in light of policy reasons. Also in this case, the comparison between OLS, PCR and CoC could be based 
on a weighted average of the squared errors across different parameter estimates. The weights, in this case, 
would depend on the relative importance, in light of policy considerations, of different parameter estimates. In 
the simulation carried out in this paper, there is no particular reason to believe that some of the generated 
parameters would be more or less important than others.  
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by each of the two steps: the estimation of the loadings for each sample and the choice of which 

components to retain; and the estimation of the parameters of the regressions for each sample. 

For comparing the predictive ability between samples, the following indicator is used: 

(15)  𝑀𝑆𝐸𝑒 =
1

500
∑ ∑

1

10000
{
1

2
[(𝑥𝑒1𝑙𝑘 − 𝑥𝑒1𝑙)

2 + (𝑥𝑒2𝑙𝑘 − 𝑥𝑒2𝑙)
2]}10000

𝑙=1
500
𝑘=1  

where xe1l is the true value of the variable xe1 (of the e-type variables) for the lth observation in the 

generated dataset; xe2l is the respective value for the variable xe2l; and x̂e1l and x̂e2l are their predicted 

values given the parameters estimated based on the kth sample. 

An additional indicator used for comparing OLS, PCR and CoC is the average number of regression 

coefficients that have to be estimated to describe the relationships between the three groups of 

variables. As discussed, this is equal to Ve∙Vq+Vq∙Vp in the case of OLS, which is 80 in the datasets used 

for this simulation. For PCR, it is Ve∙rq+Vq∙rp, and for CoC it is re∙rq+rq∙rp. The average number of 

regression coefficients to be estimated is labelled PARS. The choice to use this particular indicator in 

the comparison of the three estimation techniques is not due to statistical reasons, but to more general 

reasons that have to do with the possibility of concisely interpreting the results. As it was mentioned 

in Section 3, if the researcher can suggest a good interpretation for the components after the 

exploratory data analysis, and if the number of regression coefficients is not large, then the results can 

be commented upon in a concise and effective way. Hence, in the context of the type of problem 

analysed in this paper, a lower number of estimated regression coefficients is potentially a desirable 

characteristic of an estimator.11 

Each of these four indicators has been computed for OLS, PCR and CoC. Furthermore, for PCR and CoC, 

different rules were applied to select the principal components to be retained. 

As discussed in Section 3, when applying PCR and CoC in this paper, the estimated principal 

components are retained and used in the analysis only if their estimated eigenvalue is greater than a 

specified threshold. Hence, it is of great interest to compare OLS, PCR and CoC when using different 

thresholds to select the principal components. The threshold, representing the minimal eigenvalue 

above which components are retained and used in the analysis, is the same for the variables of each 

group p, q, and e and it varies in the simulation from 0 to 1 with intervals of 0.1. Notice that choosing 

zero as the minimum eigenvalue makes the PCR and CoC estimators identical to the OLS estimator, 

since all principal components are retained. Conversely, if the minimum eigenvalue is set equal to one, 

then only those principal components with an eigenvalue equal to or greater than one will be retained, 

following the so-called Kaiser rule (Guttman, 1954; Kaiser, 1960). The choice which components to 

retain is guided by two partially conflicting objectives (reducing the variance of the estimate and 

avoiding the introduction of excessive bias – Jolliffe, 2002, Chapter 8). Thus, it seems likely that a trade-

off will emerge. Increasing the minimum eigenvalue will likely increase the precision of the estimate 

at the cost of increasing the bias. The combined effect on the MSEs is therefore not clear a priori. 

Before closing this paragraph, note that much wider range of possible eigenvalues is explored than 

what is usually suggested in the literature. For example, Jolliffe (2002, Chapter 8) suggests minimal 

                                                           
11  Notice that PARS refers to the number of estimated regression coefficients, and not to the number of 
parameters in β̂q, β̂e, and δ̂, which is always equal to Ve∙Vq, Vq∙Vp and Ve∙Vp, respectively (which is equal, in the 
simulation presented in this paper, to 20, 60 and 12 parameters, respectively). 
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eigenvalues between 0.01 and 0.1. However, in explorative analysis the need to reduce the dataset to 

a smaller number of components can often render greater minimal eigenvalues more desirable. 

Besides comparing these four indicators for PCR, OLS and CoC, I also compute standard errors by 

bootstrapping for the CoC estimates. Bootstrapping is a suitable method for estimating standard errors 

for CoC estimates, because it allows deriving standard errors without knowing the theoretical 

distribution of the parameters (Davidson and MacKinnon, 2006; Efron and Tibshirani, 1986), and it 

performs reasonably well in small samples (Yung and Chan, 1999). 

For each of the 500 samples, the parameters were estimated by CoC, and the standard errors of the 

parameters were computed by bootstrapping. This allowed to compute two key statistics, that can be 

compared to each other. One of these statistics is the average of the standard errors estimated by 

bootstrapping across the 500 estimates. The other one is the “true” standard error of the estimated 

parameters or, in other words, the standard deviation of the estimated parameter across the 500 

sample estimates. If the values of the two statistics are close to each other, then bootstrapping can be 

regarded as an appropriate tool for computing standard errors, at least in situations resembling the 

simulated datasets (with homoscedastic error terms in the data-generation process). In order to 

generate the bootstrap statistics, I involved what Efron and Tibshirani (1986, p. 57) called “two levels 

of Monte Carlo”. For 500 times, first a sample was drawn from the generated data and then, with this 

sample fixed, 500 bootstrap samples were drawn. For each bootstrap sample, the 12 parameters in δ 

were estimated, along with the respective standard errors (remember that in the simulated dataset, 

Ve=2 and Vp=6, so that the number of parameters in δ is 12). As a result, for each of these parameters, 

it has been possible to compute and compare the average estimated standard error, the variance of 

the estimated standard error, and the real standard deviation of the parameter estimate. The 

bootstrap samples were generated with what Davidson and MacKinnon (2006, p. 820) define as the 

“non-parametric procedure”, which is probably the most commonly used. This procedure “amounts to 

drawing each observation of a bootstrap sample randomly, with replacement, from the original 

sample”. 

 

5. Simulation results 

Comparison between OLS, PCR, and CoC 

Figure 2 shows the comparison between the estimated MSEβ and MSEδ for Dataset 1. On the horizontal 

axis, it is shown the eigenvalue representing the threshold above which components are retained in 

PCR and CoC. For example, on the left side of the figure (eigenvalue=0) the comparison between OLS, 

PCR and CoC has been carried out for the case in which all components have been retained. Conversely, 

on the right side of the figure (eigenvalue=1) the so-called Kaiser rule has been used to choose the 

components to use in the PCR and CoC estimation. The first indicator (MSEβ) measures the accuracy of 

the estimators β̂e and β̂q for each of the three different methods. In other words, it measures the ability 

to yield an accurate estimate for the direct relationships between, on one side, Xp and Xq; and, on the 

other side, Xq and Xe. The second indicator (MSEδ) measures the accuracy of the estimator matrix δ̂. In 

other words, it measures the ability to yield an accurate estimate for the overall, mediated relationship 

between Xp and Xe. The MSEs are on the vertical axis. The dotted lines represent MSEβ and MSEδ for 

OLS. These are horizontal lines, because changes in the minimum eigenvalues are relevant only for the 
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PCR and CoC estimators, but not for OLS. The solid and dashed lines represent MSEβ and MSEδ for CoC 

and PCR, respectively. They are close to each other, which means that PCR and CoC yield similar 

estimates for Dataset 1. Note that OLS, PCR and CoC are identical if the minimal eigenvalue is equal to 

zero, so that the values for MSEβ and MSEδ are the same if the minimal eigenvalue is equal to 0 (except 

for a small sampling error). 

In general, MSEβ is much lower than MSEδ for all three techniques (often MSEβ is less than half as large 

as MSEδ). Furthermore, both MSEδ and MSEβ decrease for small minimal eigenvalues, indicating that 

there is a gain in the accuracy of the estimates when using PCR or CoC. However, if the minimal 

eigenvalue increases above 0.1, MSEβ increases, and PCR and CoC perform worse than OLS for 

eigenvalues greater than 0.7. Conversely, MSEδ decreases from approximately 3% if the minimal 

eigenvalue is set equal to zero, to approximately 2.2% if the eigenvalue is 0.5, and it stabilises for larger 

eigenvalues. This is a very interesting result, which indicates that the optimal retention rule may differ 

according to which parameters the researcher wants to estimate. In other words, the trade-off 

between the stability of the estimates and the amount of bias apparently affects the estimator 

differently for different parameters. As mentioned in the previous section this is particularly interesting 

because an often-used rule of thumb in PCR suggests to use a minimal eigenvalue between 0.01 and 

0.1. In light of Figure 2, this is justified in the classic framework of PCR, which estimates the parameters 

of a direct, “X→Y” relationship. These parameters can be compared to the parameters in the matrices 

βe and βq. However, Figure 2 also shows that a different choice of the minimal eigenvalue may be 

optimal when estimating parameters of a mediated relationship such as the one between Xp and Xe. 

 

Figure 3 shows the same indicators for Dataset 2, where the problem of multi-collinearity is more 

severe. The overall pattern is very similar to that in Figure 2, but PCR and CoC perform better than OLS. 

For example, if the minimum eigenvalue equals 0.5, the ratio between the value of MSEβ for CoC and 

for OLS is equal to 0.95 for the simulation using Dataset 1, and to 0.61 using Dataset 2. Similarly, the 

ratio between the value of MSEδ for CoC and for OLS is equal to 0.77 for the simulation using Dataset 

1, and to 0.42 using Dataset 2. 

The performance of OLS, PCR and CoC in the two different datasets with respect to their predictive 

ability (as measured by MSEe) is shown in Figure 4. The value of the mean squared error is 

approximately 0.0001, but it is higher when using Dataset 1 than when using Dataset 2. Again, the 

indicators for OLS are on the horizontal dotted lines, whereas the indicators for PCR and CoC (which 

are consistently very close to each other) are on the dashed and the solid line, respectively. MSEe is (as 

expected) approximately equal for all the three methods if the eigenvalue equals zero, but it is lower 

for PCR and CoC if the eigenvalue is greater than zero, indicating that the latter methods perform 

better. Again, the difference between OLS and the other methods is larger in Dataset 2 (the ratio 

between the MSEe using CoC and using OLS is 0.98 for Dataset 1 and 0.94 for Dataset 2). This confirms 

expectations, because the problem of multi-collinearity is more severe in Dataset 2.  
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Figure 2 Comparison between the MSEs obtained by using different estimation techniques and retention rules (Dataset 1) 

 

 

Figure 3 Comparison between the MSEs obtained by using different estimation techniques and retention rules (Dataset 2) 
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Figure 4 Comparison of MSEe for OLS, PCR, and CoC, using the two different datasets 

 

 
 
Figure 5 Comparison of PARS for OLS, PCR, and CoC, using the two different datasets 

 

  



20 
 

The indicator PARS indicates how many parameters are used, on average, to describe the 

relationships in Figure 1. This indicator is reported in  

 

Figure 5. If its value is low, then the researcher can describe the relationships in the data in a more 

parsimoniously (provided that an interesting interpretation exists for the components associated to 

the parameters). As discussed, this value must be lowest for CoC and highest for OLS. For OLS, 

PARS=Ve∙Vq+Vq∙Vp, which is equal to 80 (horizontal dotted line in  

 

Figure 5). For CoC and PCR, PARS is equal to 80 if the minimal eigenvalue is equal to zero, and it 

decreases steadily for increasing eigenvalues. Using Dataset 1 for example, PARS decreases at more or 

less a constant rate of 14-17% per decimal point of the minimal eigenvalue for CoC (solid line marked 

by triangles), and it is equal to 12.4 if the minimal eigenvalue is equal to one. In general, PARS for CoC 

is lower than for PCR, and it is lower using Dataset 2 than using Dataset 1. 

To summarise, the simulations confirm what was expected from the discussion of the three methods. 

Given the very small sample size, PCR and CoC generally outperform OLS, and relative performance 

improves further the more severe the problem of multi-collinearity is. CoC is the method that allows 

to describe the relationships in the data with the lowest number of parameters, which can be useful 

in an explorative analysis. Although it is not the goal of the simulations to systematically show the 

relative performance of the three methods under different conditions, this exercise shows that, under 

certain conditions, CoC is a more attractive statistical tool OLS and PCR. 

Bootstrapped standard errors for CoC 

Bootstrapped standard errors were computed for the parameters in the matrix δ, estimated by CoC, 

and for three different minimal eigenvalues: 0, 0.5, and 1. I focused on δ and the three eigenvalues 

mentioned above in order to keep the exposition brief, but the results are qualitatively unchanged for 

the parameters in βe and βq, and for different eigenvalues. 

Table 1 and Table 2 report (for Dataset 1 and Dataset 2, respectively) three statistics related to the 

standard error of each δ̂ij, where δ̂ij is the estimator of the effect of variable xj (belonging to Xp) on 

variable xi (belonging to Xe), i=1,…,6, j=1,2. The first statistic is the average of the estimated standard 

error of δ̂ij, labelled as σ̂. In other words, the standard error of each parameter δ̂ij is estimated by 

bootstrapping for each of the 500 samples, and then σ̂ is defined as its average. The second statistic is 

the standard deviation of the estimated standard error of δ̂ij, SD(σ̂). This means that the standard error 

of each parameter δ̂ij is estimated by bootstrapping for each of the 500 samples, and then SD(σ̂) is 

defined as its standard deviation. The third statistic is the “true” standard error of δ̂ij, labelled as σ. 

This is obtained in the following way: first, each parameter δ̂ij is estimated for each of the 500 samples; 

second, σ is computed as the standard deviation of the 500 parameter estimates. Table 1 and Table 2 

report these three statistics for the three cases of minimal eigenvalues equal to 0, 0.5 or 1. The goal of 

the comparison of these three statistics is to see how close σ̂ and σ are to each other, especially relative 

to SD(σ̂). 
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Table 1 shows that the standard deviation of the standard errors estimates, SD(σ̂), is equal to 

approximately 15 to 20% of the average estimate σ̂ or of the “true” parameter σ (depending on the 

exact δ̂ij). In most cases, the average estimated standard error σ̂ is close to the “true” standard error 

(for example, in 78% of the cases, σ lies within the interval σ̂±SD(σ̂), and it always lies within the 

interval σ̂±2·SD(σ̂)). Furthermore, there is no clear evidence of an upward or downward bias (in 25 of 

36 cases the relationship is σ̂>σ, while in the remaining 11 cases the contrary is true). All three statistics 

are generally lower for higher minimal eigenvalues, reflecting an increase in the stability of the 

estimate if more components are excluded. The results are very similar in Table 2. 

As expected (given the extensive literature on the properties of bootstrapping) it can be concluded 

that bootstrapped standard errors are good estimators for the real standard errors of the estimators 

in δ̂. This means that a measure of the precision of the CoC estimators can be obtained by 

bootstrapping. However, in the simulation reported in this paper, the errors in the data-generating 

process are homoscedastic, and all variables are approximately normally distributed. Researchers 

applying CoC in contexts in which these assumptions do not hold should evaluate the appropriateness 

of the bootstrap procedure case by case. 

Table 1 Estimated standard errors (with respective standard deviation) and “true” standard errors, Dataset 1 

Eigenv. Stat. δ̂11 δ̂12 δ̂13 δ̂14 δ̂15 δ̂16 δ̂21 δ̂22 δ̂23 δ̂24 δ̂25 δ̂26 

0 

σ̂ 0.186 0.187 0.186 0.196 0.196 0.182 0.200 0.195 0.195 0.204 0.208 0.189 

σ 0.191 0.190 0.180 0.190 0.163 0.182 0.203 0.211 0.205 0.157 0.196 0.157 

SD(σ̂) 0.033 0.033 0.033 0.034 0.037 0.033 0.033 0.032 0.031 0.034 0.035 0.030 

0.5 

σ̂ 0.108 0.106 0.101 0.102 0.111 0.105 0.109 0.106 0.101 0.102 0.114 0.105 

σ 0.144 0.102 0.130 0.090 0.085 0.094 0.139 0.103 0.130 0.091 0.085 0.094 

SD(σ̂) 0.020 0.019 0.017 0.019 0.022 0.017 0.021 0.019 0.017 0.018 0.023 0.018 

1 

σ̂ 0.067 0.066 0.064 0.065 0.071 0.066 0.067 0.066 0.064 0.065 0.071 0.066 

σ 0.065 0.061 0.065 0.056 0.063 0.061 0.065 0.061 0.065 0.056 0.063 0.061 

SD(σ̂) 0.013 0.014 0.013 0.012 0.014 0.014 0.013 0.014 0.013 0.012 0.014 0.014 

  

Table 2 Estimated standard errors (with respective standard deviation) and “true” standard errors, Dataset 2 

Eigenv. Stat. δ̂11 δ̂12 δ̂13 δ̂14 δ̂15 δ̂16 δ̂21 δ̂22 δ̂23 δ̂24 δ̂25 δ̂26 

0 

σ̂ 0.22 0.237 0.256 0.255 0.244 0.227 0.229 0.246 0.266 0.263 0.252 0.235 

σ 0.173 0.238 0.235 0.334 0.238 0.196 0.185 0.222 0.214 0.324 0.27 0.225 

SD(σ̂) 0.042 0.044 0.05 0.052 0.049 0.043 0.044 0.047 0.054 0.053 0.05 0.045 

0.5 

σ̂ 0.097 0.098 0.104 0.099 0.095 0.103 0.097 0.098 0.104 0.099 0.095 0.103 

σ 0.111 0.088 0.09 0.076 0.1 0.111 0.111 0.088 0.09 0.076 0.1 0.111 

SD(σ̂) 0.019 0.02 0.021 0.021 0.018 0.02 0.019 0.02 0.021 0.021 0.018 0.02 

1 

σ̂ 0.056 0.065 0.06 0.055 0.06 0.055 0.056 0.065 0.06 0.055 0.06 0.055 

σ 0.045 0.054 0.057 0.052 0.062 0.058 0.045 0.054 0.057 0.052 0.062 0.058 

SD(σ̂) 0.014 0.014 0.015 0.013 0.014 0.014 0.014 0.014 0.015 0.013 0.014 0.014 

 

6. Application 

In this section, the dataset analysed by Hoareau et al. (2012, 2013) is used to illustrate how CoC can 

be applied in practice. The units of observation are 32 European countries, and the variables are 
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standardised before the analysis. However, the coefficients of association between different variables 

that are estimated in this section are reported in terms of the original units of measurement. 
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Table 3 List of variables 

Category Indicator Year Source 

Policy Organisational autonomy (1 to 6 scale) 2008 CHEPS 

Policy autonomy (1 to 6 scale) 2008 CHEPS 

Financial autonomy (1 to 6 scale) 2008 CHEPS 

Expenditures per student as a % of GDP per capita 
(tertiary education) 2008 OECD and World Bank 

Expenditure on financial aid as a % of total public 
expenditures on education (tertiary education) 2006-2008 Eurostat 

Role of formulas and contract in funding 
mechanisms (1 to 6 scale) 2008 CHEPS 

Performance Scientific publications within the 10% most cited 
scientific publications worldwide as a % of total 
scientific publications per country 2007 

European Commission 
Innovation Unit 

Number of universities in the top 500 Academic 
Ranking of World Universities (ARWU) per million 
inhabitants 2011 ARWU 

Number of incoming Marie Curie fellows per million 
inhabitants 2008-2009 

European Commission 
Innovation Unit 

European Research Council Starting grant wins per 
million inhabitants 2011 European Research Council 

Public-private co-publications per million 
inhabitants 2008 

Pro Innovation Union 
Scoreboard 

Employment rates of 18-34 years old, 3 years or less 
after leaving tertiary education 2010 Eurostat 

Graduates to enrolments ratio (tertiary education) 2010 Eurostat 

Transition: students entering tertiary education 
through an alternative route (vocational training, 
accreditation of prior learning, etc.) 2008-2011 Eurostudent 

Students in tertiary education aged 20 as a % of total 
population in the corresponding age 2010 Eurostat 

International students: inward mobile students as a 
% of the student population 2009 Eurostat 

Economic 
innovativeness 

Employment in knowledge intensive activities as a % 
of total employment 2009 

European Commission 
Innovation Unit 

GDP per hour worked in Purchasing Power Standard 
units 2009-2010 

European Commission 
Innovation Unit 

 

Table 3 is adapted from Hoareau et al. (2012, pp. 11–13). It shows the variables used in that study, as 

well as in this section. The variables are grouped into three categories: policy, performance and 

innovativeness. In the theoretical framework of the authors, the university policies of a country impact 

the performance of the university system, which in turn affects economic innovativeness. Performance 

perfectly mediates the relationship between policy and innovativeness. 

The policy variables are intended to capture the policy tools that can be used by governments to 

influence the performance of the national higher education system. The policy variables are: three 

variables representing different aspects of autonomy (organisational, policy, and financial autonomy); 

one variable intended to capture the efficiency of the incentive system that the government creates 

for universities (the extent to which public, higher education funding is allocated by means of formulas 

and contracts – see CHEPS, 2008); one variable measuring the expenditures per student in higher 

education, relative to GDP per capita; and one variable indicating how much of these expenditures is 

devoted to student aid. 
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The performance category includes ten indicators, representing several dimensions of higher 

education performance at country level such as research (e.g. the number of grants from the European 

Research Council won in a given country, relative to population), internationalisation (e.g. international 

students) or student retention (graduates to enrolment ratio).  

Finally, there are two variables linked to economic innovativeness: the proportion of workers 

employed in knowledge-intensive activities and labour productivity (measured as GDP per hour 

worked). For more details on the variables chosen and on the coding, as well as on the rationale behind 

the choice of the variables, the reader is referred to Hoareau et al. (2012, 2013). 

Following the authors of these studies, no control variable is included such as the overall level of 

employment, or indicators for the level of the physical capital stock in a country. Notice that, while for 

the sake of tractability the assumption of multivariate normality of the variables was maintained 

throughout Sections 3 to 5, several of the variables in this dataset are discrete variables. This is a 

limitation of this paper. Since in applied work non-normally distributed variables are often 

encountered, it will be interesting to relax the normality assumption in future studies on CoC. Finally, 

it must be mentioned that there is no claim of uncovering causal relationships in this section. The 

interest is rather in the relative ability of CoC, OLS and PCR of yielding precisely estimated association 

coefficients, conditional on the other variables included in the estimation.  

Table 4, Table 5 and Table 6 report estimated coefficients and standard errors (computed by 

bootstrapping) for the estimated association between the policy variables and the innovativeness 

variables for CoC, PCR and OLS, respectively. The association between policy and performance 

indicators or between performance and innovativeness indicators can also be estimated according to 

the procedure described in the previous sections, but it is not reported here, as it does not add 

substantially to the comparison between the three methods analysed in this paper. 

The eigenvalue under which components are discarded for CoC and PCR is one. The components can 

be rotated in any way, yielding identical results.  

The estimates are derived under the assumption that this association is perfectly mediated by the 

performance variables. Note that CoC allows to test this assumption based on a regression of the 

innovativeness component on the performance components and the policy components. The 

coefficients for the performance components in the regression are jointly significant at a 1% 

confidence level. In contrast, the coefficients for the policy components are jointly not significant (p-

value = 0.66), indicating that the policy components are not associated with the innovativeness 

component conditional on the performance components. Interestingly, if the performance 

components are not included in the regression, then the coefficients for the policy components are 

jointly significant at a 10% confidence level, indicating that they are associated with the innovativeness 

component. 

As Table 4 shows, for most of the policy variables the association estimated by CoC is lower than the 

standard deviation in absolute values. The exceptions are expenditures per student and financial aid, 

whose coefficient is more than twice as large as the standard error (the coefficient-to-standard error 

ratio equals 2.47 and 2.94, respectively). An increase of 1% in the expenditure per student relative to 

GDP per capita is associated with a 0.25% increase in the share of workforce employed in knowledge-

intensive activities, and with a 0.40€ increase in GDP per hour worked. An increase of 1% in the 
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expenditure related to student aid relative to total public expenditures in higher education is 

associated with a 0.16% increase in the share of the workforce employed in knowledge-intensive 

activities, and with an increase in GDP per hour worked approximately equal to 0.26€. 

Notice that since there are only two variables in the innovativeness category, only one component 

with an eigenvalue greater than one is extracted. As a result, the relative association coefficient of 

different policy variables with the two innovativeness variables is always the same. For example: the 

ratio between the effect of expenditures on knowledge-intensive employment and on labour 

productivity is equal to 0.64; and the ratio between the effect of student aid on knowledge-intensive 

employment and on labour productivity is equal to 0.64 as well. This is not a general characteristic of 

CoC, but it is a restriction which is necessarily imposed if there are only two dependent variables and 

the minimum eigenvalue is chosen to be one. 

Table 4 Estimated association between policy and innovativeness variables – CoC 

 Employment in knowledge intensive 
activities 

GDP per hour worked 

 Coefficient Std. Error Coefficient Std. Error 
Organisational autonomy 0.657 0.752 1.02 1.169 
Policy autonomy 0.391 1.042 0.607 1.619 
Financial autonomy -0.898 1.162 -1.396 1.805 
Expenditure per student 0.254 0.103 0.395 0.16 
Student financial aid 0.165 0.058 0.256 0.09 
Role of formulas and contract 0.112 0.413 0.174 0.641 

 

Table 5 shows that PCR leads to very similar estimates as CoC. Again, the only two variables with a 

coefficient to standard error ratio greater than two are expenditure and student aid. Also the size of 

the estimated coefficients is similar. Therefore, on the basis of the CoC and PCR estimation, it is 

possible to conclude that expenditure per student and student aid are robustly associated with the 

share of the workforce employed in knowledge-intensive activities and with labour productivity. 

Two differences between CoC and PCR are worth mentioning. The first difference lies in the number 

of regression coefficient that have to be estimated to compute the coefficients reported in Table 4 and 

Table 5. This is equal to 12 for CoC (only four regressions need to be estimated), and to 36 for PCR 

(with 12 regressions to be estimated). Thus, if there is a plausible interpretation for the components 

extracted from the dataset, CoC allows a more parsimonious interpretation of the results. A good 

example of this can be found in Hoareau et al. (2012, 2013). The second difference is that the ratio 

between the two association coefficients of each policy variable with the two innovativeness variables 

is not constrained to be the same in PCR. 

Table 5 Estimated association between policy and innovativeness variables – PCR 

 Employment in knowledge intensive 
activities 

GDP per hour worked 

 Coefficient Std. Error Coefficient Std. Error 

Organisational autonomy 0.527 0.718 1.222 1.265 
Policy autonomy 0.315 1.096 0.725 1.754 
Financial autonomy -0.623 1.054 -1.805 1.861 
Expenditure per student 0.233 0.112 0.428 0.168 
Student financial aid 0.147 0.062 0.284 0.104 
Role of formulas and contract 0.031 0.413 0.301 0.744 
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OLS yields less precise estimates, as Table 6 shows. The coefficient-to-standard error ratio never 

exceeds two, and its maximum is 1.68 (for the association between expenditures per student and 

knowledge-intensive employment). As a result, it is not possible to conclude that any of the policy 

variables are robustly associated with any of the innovativeness variables on the basis of the OLS 

estimation. 

Table 6 Estimated association between policy and innovativeness variables – OLS 

 Employment in knowledge intensive 
activities 

GDP per hour worked 

 Coefficient Std. Error Coefficient Std. Error 
Organisational autonomy -0.144 1.642 1.807 2.402 
Policy autonomy 0.771 1.823 1.72 2.749 
Financial autonomy -0.299 1.545 -2.736 2.494 
Expenditure per student 0.455 0.27 0.719 0.414 
Student financial aid 0.131 0.115 0.174 0.17 
Role of formulas and contract 0.713 0.831 1.948 1.227 

 

Hoareau et al. (2012, 2013) interpret the predicted value of the innovativeness component on the 

basis of the policy components as a measure of the suitability of national higher education policies to 

economic innovativeness. They rank European countries accordingly. Given the importance that the 

authors attribute to this constructed variable, it is interesting to see how using the three estimation 

methods analysed in this paper affects it. Instead of the predicted value of the innovativeness 

component as in Hoareau et al. (2012, 2013), the predicted value for labour productivity is reported 

here. The two measures are perfectly correlated for CoC, because of the implicitly imposed restriction 

that the ratio between the association coefficient between each policy variable and the two 

innovativeness variables must be the same. Hence, these lead to the same country ranking in the case 

of CoC. The predicted values based on CoC, PCR and OLS are computed by multiplying each of the 

policy variables by the respective coefficient in the third column of Table 4, Table 5 and Table 6, 

respectively. 

Table 7 shows that the scores are almost perfectly correlated (correlation coefficient = 0.998) for CoC 

and PCR. This implies that constructing the ranking based on the PCR and CoC coefficients leads to very 

similar results. For example, the first ten countries remain the same for CoC and PCR: Cyprus, Norway, 

Sweden, Germany, Denmark, the UK, Iceland, Austria and Belgium. However, there are small changes 

within the top ten: For example, in the ranking computed on the basis of CoC Cyprus comes first, 

whereas if PCR is used, Norway scores higher. OLS leads to different conclusions. The correlation 

coefficient between the score for OLS and CoC is equal to 0.843.  Germany, which came fourth and 

third in the CoC and PCR ranking (respectively), has the highest predicted labour productivity. Cyprus, 

which was in the top two positions, comes fifteenth if the ranking is based on the OLS results. The 

position of Italy, just below the median position in the rankings based on CoC and PCR, worsens by 

eight ranks. 

The application shown in this section illustrates how CoC can be applied to a dataset with many 

variables compared to the number of observations, yielding more precise estimates than OLS. PCR 

yields very similar estimates to CoC, but the latter allows a more parsimonious interpretation of the 

results. 
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Table 7 Predicted value for labour productivity in Euro (and respective rank) for the sample countries, according to CoC, 
PCR and OLS 

country 
Pred. Lab. 
Prod. – CoC Rank – CoC 

Pred. Lab. Prod. – 
PCR Rank – PCR 

Pred. Lab. Prod. – 
OLS Rank – OLS 

Cyprus 41 1 41.5 2 32.9 15 

Norway 40.9 2 41.9 1 40.6 2 

Sweden 36.4 3 36.6 5 37.4 3 

Germany 36.4 4 37.7 3 44.3 1 

Denmark 36.1 5 36.6 6 36.1 8 

Netherlands 36.1 6 36.8 4 36.6 6 

UK 36 7 36.5 7 37.2 4 

Iceland 32.5 8 32.9 8 33.6 12 

Austria 32.4 9 32.8 9 34.7 10 

Belgium 32.3 10 32.5 10 34.2 11 

Spain 31.8 11 32.3 11 36.2 7 

Portugal 31.6 12 31.7 13 33.5 14 

Hungary 31.4 13 31.9 12 33.5 13 

Finland 31.2 14 31.3 16 35.9 9 

Ireland 31.2 15 31.3 17 32.3 16 

Slovenia 31.2 16 31.5 15 30.9 17 

France 31.1 17 31.5 14 36.6 5 

Italy 30 18 30 18 24.7 26 

Switzerland 28.8 19 28.5 19 30.4 18 

Croatia 28.7 20 28.1 21 25.4 25 

Turkey 28.5 21 28.3 20 28.8 19 

Lithuania 28.2 22 27.9 22 23.7 27 

Estonia 27.4 23 27 23 28.4 20 

Romania 27 24 26.6 24 27.2 21 

Bulgaria 26.8 25 26.3 25 26.2 24 

Latvia 26.4 26 26.1 26 26.4 23 

Malta 26.3 27 25 29 20.5 32 

Slovakia 25.8 28 25.2 27 20.7 31 

Poland 25.8 29 25.1 28 26.7 22 

Luxembourg 25.5 30 24.9 30 23 28 

Greece 24 31 23.5 31 21.8 30 

Czech Rep. 23.5 32 22.6 32 22.2 29 

 

7. Conclusions 

In this paper, the estimator used by Hoareau et al. (2012, 2013) for their explorative analysis of 

university policies is described and compared to alternative estimators using a discussion, a simulation 

and an application of the dataset used by Hoareau et al. (2012, 2013). CoC is suitable for explorative 

analyses with multiple independent, mediating and dependent variables, and where there are 

problems of multi-collinearity or small sample size.  

CoC is an adaptation of principal component regression (PCR) in the context of multiple dependent 

variables and a mediated relationship between variables. It can also be considered as a special case of 

structural modelling with latent variables estimated by principal components. Like all other methods 

designed for multi-collinearity or small sample size, however, CoC does not “solve” the problem. Multi-

collinearity and small sample size relate to an insufficiency of information in the data that cannot be 

eliminated. However, even in the presence of these problems some methods might be superior to 

others in terms of robust model fitting, prediction, or required assumptions. 

CoC has the potential to lead to a more parsimonious empirical model, and smaller standard errors for 

the estimated coefficients, than ordinary least squares or PCR. Furthermore, standard errors can be 
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satisfactorily estimated by bootstrapping, at least if the error terms are homoscedastic. However, 

these conclusions rest on a simulation based on samples of small size (about 30 observations) and on 

particular assumptions on the data generating process (in particular, normality of the generated errors 

and variables). To generalise the results beyond this particular setting, it is necessary to investigate the 

properties of CoC in different contexts (e.g. large samples or non-normally distributed variables). 
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Appendix A 

(a) 

Suppose that the system of Equations (7) is estimated through a set of PCRs as described in Section 2, 

so that Ve+Vq regressions are run. After extracting the components from a data matrix Xc, a number mc 

of components are retained for being used as dependent variables in the PCRs. Also, suppose that 

these components are arranged in the matrix Mc. 

The estimators γ̂e and γ̂q are obtained by least squares regression of the variables in Xe and Xq on 

(respectively) the retained components Mq and Mp. As a result: 

𝛾𝑒 = (𝑀𝑞
′𝑀𝑞)

−1𝑀𝑞
′𝑋𝑒 = (𝑀𝑞

′𝑀𝑞)
−1𝑀𝑞

′𝑍𝑒𝐴𝑒 ≡ 𝜏̂𝑒𝐴𝑒
𝛾𝑞 = (𝑀𝑝

′𝑀𝑝)
−1𝑀𝑝

′𝑋𝑞 = (𝑀𝑝
′𝑀𝑝)

−1𝑀𝑝
′𝑍𝑞𝐴𝑞 ≡ 𝜏̂𝑞𝐴𝑞

 

Where τ̂e is defined as the matrix of coefficients derived from regressing every principal component in 

Ze on the retained principal components Mq; and τ̂q is similarly defined as the matrix of coefficients 

derived from regressing the principal components in Zq on the retained principal components Mp. 

The PCR estimators for βe, βq and δ are: 

𝛽̂𝑒𝑃𝐶𝑅 = 𝐴𝑀𝑞
′ 𝛾𝑒 = 𝐴𝑀𝑞

′ 𝜏̂𝑒𝐴𝑒

𝛽̂𝑞𝑃𝐶𝑅 = 𝐴𝑀𝑝
′ 𝛾̂𝑞 = 𝐴𝑀𝑝

′ 𝜏̂𝑞𝐴𝑞

𝛿𝑃𝐶𝑅 = 𝛽̂𝑒𝑃𝐶𝑅 ∙ 𝛽̂𝑞𝑃𝐶𝑅

 

Where A´Mc is made of the first mc columns of the matrix A´c. 

(b) 

Now, suppose that the system of Equations (9) is estimated by a set of PCRs, where the same mc 

components are used as independent variables in the regressions as in point (a), but all the 

components are used as dependent variables, so that Ve+Vq regressions are run. The estimated 

coefficients can be arranged in the two matrices τ̂e and τ̂q. Given the relationships in the system of 

Equations (6), it can be easily verified that the estimators for βe and βq are the same as in point (a). 

Hence, the estimation of the system of Equations (9) by PCR gives the same parameters as the 

estimation of the System of Equations (7) by PCR. 

(c) 

If the system of Equations (9) is estimated using a set of PCRs, where the same mc components are 

used as independent variables in the regressions as in point (a), and only the retained components are 

used as dependent variables (so that Ve+rq PCRs are run), then the same estimator for δ as in point (b) 

is obtained. 

To understand why, let us define Oc as the matrix containing the principal components that have not 

been retained, so that all the vectors contained in Zc are contained in either Mc or Oc. The matrix Ac 

can be decomposed accordingly into two matrices AMp and AOp, so that the System of Equations (6) can 

be re-written as: 
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(6b) {

𝑋𝑝 = 𝑀𝑝𝐴𝑀𝑝 + 𝑂𝑝𝐴𝑂𝑝
𝑋𝑞 = 𝑀𝑞𝐴𝑀𝑞 + 𝑂𝑞𝐴𝑂𝑞

𝑋𝑒 = 𝑍𝑒𝐴𝑒

 

Where for every c, the dimensionality is as follows: Mc is N ⨉ rc, Oc is N ⨉ (Vc–rc), AMc is rc ⨉ rc, and 

AOc is (Vc–rc) ⨉ (Vc–rc). 

Is possible to re-write the system of Equations (9):  

(9b) {

𝑍𝑒 = 𝑀𝑞𝜏𝑒
𝑠 + 𝑂𝑞 ∙ 𝜏𝑒

𝑟 + 𝑒𝑟𝑟𝑜𝑟𝑍𝑒

𝑀𝑞 = 𝑀𝑝𝜏𝑞
𝑠𝑀 + 𝑂𝑝 ∙ 𝜏𝑞

𝑟𝑀 + 𝑒𝑟𝑟𝑜𝑟𝑀𝑞

𝑂𝑞 = 𝑀𝑝𝜏𝑞
𝑠𝑂 +𝑀𝑝𝜏𝑞

𝑟𝑂 + 𝑒𝑟𝑟𝑜𝑟𝑂𝑞

 

Where the dimensionality of the matrices of parameters is as follow: τsq is rq X Ve; τrq is (Vq–rq) X Ve; 

τsM
q is rp X rq; τrM

q is (Vp–rp) X rq; τsO
q is rp X (Vq–rq); τrO

q is (Vp–rp) X (Vq–rq). Consequently, the vectors 

of parameters in system of Equations (9) are re-written as: 

𝜏𝑒 = [
𝜏𝑒
𝑠

𝜏𝑒
𝑟]

𝜏𝑞 = [
𝜏𝑞
𝑠𝑀

𝜏𝑞
𝑠𝑂

𝜏𝑞
𝑟𝑀

𝜏𝑞
𝑟𝑂]

 

Estimating the system of Equations (9) by PCR implies setting the estimators τ̂re, τ̂rMq, and τ̂rOq equal to 

zero. Estimating the system of Equations (9) by CoC implies setting τ̂re, τ̂rMq, τ̂rOq, and τ̂sOq equal to zero. 

Hence, the equations in the system of Equation (9b) are estimated by OLS. Notice that the estimators 

τ̂se, τ̂re, τ̂sMq, τ̂rMq, τ̂rOq, and τ̂sOq do not depend on each other, since they are either in different equations 

or they estimate the parameters of orthogonal variables (because Mc and Oc are orthogonal by 

construction for every c). As a result, the estimators τ̂se and τ̂sMq are identical when using CoC and PCR, 

because they were estimated the same way. 

The estimate of δ by CoC is equal to: 

𝛿𝐶𝑜𝐶 = 𝛽̂𝑞𝐶𝑜𝐶𝛽̂𝑒𝐶𝑜𝐶 = 𝐴𝑝
′ 𝜏̂𝑞𝐶𝑜𝐶𝐴𝑞𝐴𝑞

′ 𝜏̂𝑒𝐶𝑜𝐶𝐴𝑒 = [𝐴𝑀𝑝
′ 𝐴𝑂𝑝

′ ] [
𝜏̂𝑞
𝑠𝑀

0

0

0
] [
𝐴𝑀𝑞
𝐴𝑂𝑞

] [𝐴𝑀𝑞
′ 𝐴𝑂𝑞

′ ] [
𝜏̂𝑒
𝑠

0
]𝐴𝑒 

Algebraic manipulation leads to the following identity: 

𝛿𝐶𝑜𝐶 = 𝐴𝑀𝑝
′ 𝜏̂𝑞

𝑠𝑀𝐴𝑀𝑞𝐴𝑀𝑞
′ 𝜏̂𝑒

𝑠𝐴𝑒 

The estimate of δ by PCR is equal to: 

𝛿𝑃𝐶𝑅 = 𝛽̂𝑞𝑃𝐶𝑅𝛽̂𝑒𝑃𝐶𝑅 = 𝐴𝑝
′ 𝜏̂𝑞𝑃𝐶𝑅𝐴𝑞𝐴𝑞

′ 𝜏̂𝑒𝑃𝐶𝑅𝐴𝑒 = [𝐴𝑀𝑝
′ 𝐴𝑂𝑝

′ ] [
𝜏̂𝑞
𝑠𝑀

𝜏̂𝑞
𝑠𝑂

0

0
] [
𝐴𝑀𝑞
𝐴𝑂𝑞

] [𝐴𝑀𝑞
′ 𝐴𝑂𝑞

′ ] [
𝜏̂𝑒
𝑠

0
]𝐴𝑒  

Algebraic manipulation leads to the following identity: 

𝛿𝑃𝐶𝑅 = 𝐴𝑀𝑝
′ 𝜏̂𝑞

𝑠𝑀𝐴𝑀𝑞𝐴𝑀𝑞
′ 𝜏̂𝑒

𝑠𝐴𝑒 = 𝛿𝐶𝑜𝐶  

Note that β̂ePCR=β̂eCoC because the two vectors are estimated identically. However, it can be seen that: 

𝛽̂𝑞𝐶𝑜𝐶 = 𝐴𝑝
′ 𝜏̂𝑞𝐶𝑜𝐶𝐴𝑞 = 𝐴𝑀𝑝

′ 𝜏̂𝑞
𝑠𝑀𝐴𝑀𝑞 ≠ 𝐴𝑀𝑝

′ 𝜏̂𝑞
𝑠𝑀𝐴𝑀𝑞 + 𝐴𝑂𝑝

′ 𝜏̂𝑞
𝑠𝑂𝐴𝑂𝑞 = 𝛽̂𝑞𝑃𝐶𝑅  
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Appendix B 

Table of correlation for Dataset 1. 
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